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ABSTRACT. In this study, under harmonic multiple 

frequency excitations, the dynamic response of a cracked 

cantilever beam is investigated. The breathing crack model 

is assumed to show the nonlinear behaviour of a transverse 

crack. The first mode of vibration and the single degree 

freedom lumped system is considered to simplify the case 

study. Because of applying the multiple frequency 

excitations, the analysis is applied in a combinational 

resonance. Multiple time scales method is employed to 

solve the motion equation of the crack, and the nonlinear 

vibrational responses are obtained. Then, by changing the 

crack parameters and frequency of the excitations, the 

different dynamic responses of the crack are demonstrated. 

The proposed model shows that the crack parameters 

analysis in nonlinear vibration of multiple excitations 

could be an appropriate method to recognise the crack and 

the depth of the damage. Results indicate that the beam 

analysis under multiple frequency excitations is more 

sensitive than the single frequency excitation to illustrate 

the impacts of the crack parameters on its vibrational 

nonlinearity responses. 
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1. INTRODUCTION 
 

Beam-like structures are widely used in most 

engineering fields. These structures are mostly employed 

in mechanical, civil, and aerospace engineering. Some 

examples of beam applications could be in bridges, spar of 

wings, helicopter turbine blades, and car frames. In 

general, isotropic materials have extensive usage in the 

engineering fields (Motamedi & Hashemi, 2019; 

Motamedi et al., 2018; Sarbaz et al., 2018). In some cases, 

we can simplify the analyses by studying these structures 

as a beam. Damage detection, especially at the primary 

level, is an essential issue for industries and researchers to 

avoid catastrophic failure. Crack is one of the main reasons 

for fracture. Therefore, it is crucial to identify and predict 

cracks in the earliest possible state. 

In order to detect cracks, some researchers have 

attempted to find a relationship between crack parameters 

and natural frequency variations. Among researchers who 

have adopted this kind of approach, we can refer to Narkis 

(1994); Lee (2016); Khiem and Toan (2014). 

Khiem and Tran (2014), in another research, focused 

on multiple cracks with the approach of changing the 

natural mode shapes. In another research, Ganjuli and 

Gouravaraju (2016) have worked on a cantilever beam in 

order to damage detection applications using mode shapes. 

Many researchers, however, simulate and analyse cracks in 

other ways. Some researchers such as Panigrahi and Pohit 

(2018); Ballo (1998), for instance, have analysed a crack 

using a spring model. Ballo has used a bilinear stiffness to 

model the crack stiffness. Another study performed by 

Curadelli et al. (2008), has used the wavelet transform 

considering damping effects to detect a crack. 

Furthermore, some researchers have modelled stiffness 

to analyse cracks using the finite element method (Eroglu 

& Tufekci, 2016). Dixit and Hanagud (2011) analysed a 

damaged beam and verified the approach using strain 

energy-based measuring the damage. Cam et al. (2005) 

have introduced a vibration strategy to investigate crack 

detection using the impact of shocks. Other researchers 

like Friswell and Penny (2002) have indicated that using 

low frequency in cracked structures could be useful to 

identify cracks. 

In beam structures, Douka et al. (2004) have suggested 

an approach to identify double cracks utilizing anti-

resonance effects. In cantilever beams, Jassim et al. (2013) 

have adopted experimental and theoretical approaches to 

analyse cracks. 

Many researchers like Heydari et al. (2015); Balci and 

Gundogdu (2017); Bachschmid et al. (2000); Krawczuk 

and Ostachowicz (1995); Gudmundson (1983); Orhan 

(2007); Ostachowicz and Krawczuk (1991); Papadopoulos 

and Dimarogonas (1987); Wu and Law (2004) have 

utilised the open crack model in their case studies. 

However, the open crack model cannot display the 

nonlinear behaviour of cracks. 
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Many other researchers like Prawin and Rao (2019); 

Lengyel and Németh (2018); Carneiro and Ribeiro (2016); 

Caddemi et al. (2010); Bolotin and Shipkov, (2001); Fu et 

al. (2018); Cicirello and Palmeri (2014); Giannopoulos et 

al. (2015); Wauer (1990); Ogam et al. (2014); Liu and 

Barkey (2017, 2018) have considered the nonlinear effect 

of cracks in their studies using breathing crack model. 

Over the last few decades, many researchers proposed 

nonlinear vibration analysis of the beam in different 

methods (Ke et al., 2010; Zhang, 2014; Shegokar & Lal, 

2014). In an analysis of a cracked beam under forced 

vibration, Andreaus and Baragatti (2011) have adopted a 

numerical approach to investigate the relation between 

resonances and crack parameters. Liu and Barkey (2017), 

as well as Andreaus et al. (2007), have analyzed a cracked 

beam under the single harmonic force and investigated the 

nonlinear dynamic responses.  

Liu and Barkey (2017) introduce a quadratic 

polynomial model for stiffness to the presentation of the 

breathing behaviour of the crack. This model shows an 

appropriate sensitivity to the depth and position of the 

crack. Because of many advantages of this model, 

especially the ability to modelling the transient stage 

between fully opened or fully closed crack, this model has 

been considered in this work. 

In this study, we have analyzed a beam under multiple 

transverse frequency excitations to get some information 

about how applying multiple frequency excitations, or pre-

force could change the nonlinear vibrational response of 

cracks. Applying multiple frequency excitations leads to 

some combinational resonances instead of super-harmonic 

or sub-harmonic resonance. One of these resonances is 

employed to study the cracked beam's nonlinear 

behaviours. 

To show the cubic and quadratic nonlinearities of a 

cracked beam, the cubic and quadratic equation of motion 

are considered. We used the single degree freedom of the 

Euler-Bernoulli beam. Then we solved the equation of 

motion using multiple time scales method to reach the 

nonlinear amplitude-frequency responses of multiple 

frequency excitations.   

 

 

2. SDOF MODELING OF BREATHING 

CRACK IN A BEAM 

 

In Fig. 1, a breathing crack model of a cantilever beam 

is shown. The multiple excitations of f1(x, t) and f2(x, t) 

applied to the beam’s free end. When these harmonic 

excitations apply to the cracked beam, the breathing crack 

will be constantly opened and closed with vibration 

magnitude change per cycle. Fig. 1(b) demonstrates the 

crack when it is fully opened in tension mode. Fig. 1(c) 

displays the crack when it is fully closed in compression 

mode. 

 
Fig. 1. Model of the breathing crack 

As it can be seen, in the process of breathing crack, the 

stiffness value frequently changes between minimum and 

maximum in fully opened and fully closed of the crack, 

respectively. This variable stiffness leads to nonlinearity in 

vibrational responses.  
Based on the beam's B.C. for the cantilever beam, by 

solving the equation of motion of the Euler-Bernoulli 

beam, the modal function given by Lalanne et al. (1983): 

 

( ) (cos cosh )

(sin sinh )
(sin sinh )
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x x x
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x x
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  

 
 

 

 


 
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               (1) 

 

The solution to the equation given below is 

the L magnitude. 

 

1 cos( )cosh( ) 0L L                                            (2) 

 

The first mode shape of the cantilever beam obtained 

1.875L  , and in this study, we considered only the 

first mode. There is no difference of a beam's stiffness 

value between a vibrating beam and a static. It means that 

physical properties are the same. When a crack of the 

beam is in compression mode it means that it is equal to 

have no crack, so the stiffness of the beam considered as 

an intact beam that given by Clough and Penzien (1993):  

 

2''

0

1
( )

L

c

c

k EI x dx
C

                                                (3) 

Where the intact beam’s stiffness is ck , cC  represents 

an intact beam’s flexibility in state of fully closed of the 

crack, E is Young’s modulus, I is the moment of inertia 

of cross-section of the beam and beam’s modal function is 
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 . It should be noted that due to the presence of crack in a 

beam, the beam's flexibility increases. In this way, the 

flexibility of the cracked beam can be written as: 

 

o cC C C                                                                 (4) 

 

Where C  is the additional flexibility because of the 

crack. Dimarogonas et al. (2013) studied the cracked 

cantilever beams and determined C for a crack with the 

depth of a  and cl  means the distance between the crack 

and the free end of the beam. 

 
2 2

4

72 (1 )(1 )L
C

Ebh

   
                                          (5) 

Where ν is the Poisson ratio, cl

L
  , L is the beam 

length, b is the width, and h is the height, as indicated in 

Fig. 1(a). The function of  is given below (Dimarogonas 

et al., 2013): 
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                      (6) 

 

Where   equals to 
a

h
. Now simply ok , that is the 

stiffness of the beam in the fully opened crack state can be 

calculated by applying Eq. (7): 

 

1
o

o

k
C

                                                                          (7) 

 

For modelling the stiffness of the breathing crack, a 

quadratic polynomial function is considered that is a 

function of vibration amplitude. So we have (Liu & 

Barkey, 2017): 

 
2

0 1 2Ak c c A c A                                                      (8) 

 

Where Ak  is the cracked beam’s stiffness, 0c , 1c  and 

2c  are unknown coefficients that are related to the 

boundary condition of the model that should be calculated.  

A  is equal to 
( )

cm

A t

A
. Where ( )A t  is a time-dependent 

amplitude of vibration of the crack that is measured from 

the neutral axis. cmA is the maximum vibration amplitude 

when the crack is fully closed. Three unknown coefficients 

after assuming three states of crack for boundary condition 

are calculated. It is assumed 
( )

2

o c
A

k k
k


  when 

0A  , A ck k  when 1A  , and A ok k when 

o

c

A
A

A
  . In these equations oA is the amplitude of 

vibration from the neutral axis when the crack is fully open 

and cA  is the amplitude of vibration from the neutral axis 

when the crack is fully open. Now we have (Liu & Barkey, 

2017): 

 

0

2 2

1

2

2

2 ( )

( )

2 ( )

c o

c o o c

o c o

c o c o c

o c o

k k
c

k k A A
c

A A A

k k A A A
c

A A A

 



  




  




                                         (9) 

 

 

3. SDOF MODEL OF A BEAM 

 

Single degree freedom equation of beam under 

multiple excitations can be indicated as follows: 

 
2

* * * *

1 22
2 n

d u du
m K u F F

dt dt
                             (10) 

 

Where ( )u t is the modal coordinate, which depends on 

time,  is damping, the beam’s natural frequency is n . 

*m , 
*K and 

*

1,2F are the generalized mass, generalized 

stiffness, and generalized forces, respectively. They are 

calculated from the following equations: 

 

* 2

0

4
*

40

*

1 1 1
0

*

2 2 2
0

( )

( )
( )

cos( ) ( ) ( )

cos( ) ( ) ( )

L

L

L

L

m S x dx

x
K EI x dx

x

F F t x x l dx

F F t x x l dx

 




 

 













   



  









                         (11) 

 

Because of many variables that effect on the vibration 

magnitude of the system, the parameters and loads are 

https://www.londontechpress.co.uk/


International Journal of Advanced Engineering, Sciences and Applications (IJAESA), Volume 1, Issue 1, January 2020 

4                           This work is licensed under Creative Commons Attribution 4.0 International License.                            London Tech Press  

 
https://www.londontechpress.co.uk/ 

normalized during analysis. Therefore, for the amplitude of 

vibration in fully opened and fully closed states, we have: 
* *

1 2

* *

1 2

c

c

o

o

F F
A

k

F F
A

k

 





 



                                                          (12) 

 

 

4. MULTIPLE FREQUENCY 

EXCITATIONS 

 

The general nonlinear equation of motion of the SDOF 

beam is: 

 
2

2

2
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            (13) 

 

In this equation, ( )iF t  is considered harmonic with the 

frequency of i . For considering the damping effect on 

the system,  is considered as a weak linear viscous 

damping. In this equation,   shows the quadratic 

nonlinearities coefficient. Furthermore,   indicates the 

cubic nonlinearities coefficient. n  is introduced for the 

magnitude of the natural frequency of the beam with 

crack. n ,  ,   and ( )iF t are obtained from the 

following equations (Liu & Barkey, 2017): 
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In this study for solving the equation, we applied the 

multiple scales method. Multiple time scales method is one 

of the subsequences of perturbation methods. Let (Nayfeh, 

2011): 

 

0 0 1 2 1 0 1 2

2

2 0 1 2

( , ) ( , , ) ( , , )

( , , )

u t u T T T u T T T
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
                  (15) 

The parameters of 0 0 1 2( , , )u T T T , 1 0 1 2( , , )u T T T , and 

2 0 1 2( , , )u T T T  are functions that should be determined 

and  is a small dimensionless perturbation parameter. 

The multiple scales method of perturbation can changes 

various time scales into an independent time scales like nT . 

It is given by (Nayfeh, 2011): 

 

0,1,2...n

nT t n                                                 (16) 

 

The D-operator can be used (Nayfeh, 2011) to write 

the first- and second-order derivatives at the equations of 

motion: 
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Because of ordered categories in multiple scales 

method, parameters in the equation of motion need to be 

ordered. To satisfy this, the following terms are selected 

(Liu & Barkey, 2017): 

 
2 2, ,                                               (18) 

 

Substituting Eq. (18) into Eq. (13) yields to:  
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Substituting Eq. (15) and Eq. (17) into Eq. (19) we have: 
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Separating the terms of 
0 1 2, ,   applying Eq. (20) 

yields to: 

 
0 2 2

0 0 0 1 1 2 2: cos( ) cos( )nD u u F t F t         (21) 

1 2 2 2

0 1 1 0 1 0 0: 2nD u u D Du u                           (22) 
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The general solution of Eq. (21) is in the following form: 
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In Eq. (24), A  is the complex magnitude. These are 

unknown amplitudes. By eliminating the secular terms of 

u1 the amplitude can be solved as follows: 
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By solving the Eq. (22), 1u is found as: 
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Substituting Eq. (24) and Eq. (26) into Eq. (23), the 

equation becomes 
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   (27) 

 

In Eq. (27) there are some phases that lead to secular 

terms. Some of them are primary resonance that should be 

considered anyway. Some are single frequency secular 

terms and others are the combinations of multiple 

frequencies. In this study, because of discussion about 

multi-frequencies we consider one of the combinational 

resonance secular terms. This term is: 

 

1 2 n n                                                          (28) 

 

To eliminating the secular terms, we assumed a 

perturbation in the following form: 
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1 2 2 n                                                      (29) 

 

Where   is called detuning frequency that used to 

illustrate the nearness of 1 2  to 2 n quantitatively. 

In this study,   assumed to be equal to 0.01. So the term 

of  has a very small magnitude. For example, it 

 illustrates the magnitude of 100 rad/sec, by 

multiplying , it gives 1 rad/sec magnitude. It is assumed 

that: 

 

1

2

iA ae                                                                     (30) 

 

Where a  and  are real terms. For keep solving 

process we assumed:   

 

1T                                                                      (31) 

 

After assuming the steady-state condition during 

solving problem (
' 0   and 

' 0a  ), and with some 

mathematical techniques, solving process leads to the 

following equation: 

 

3 2 3

2

2

1 2 1 2

2

2

1 2 1 2

3
46 0.1

8( )
3 0.004

8464
( ) 1

3 0.004

a a a

aF F F F a

a

aF F F F a

  

 



 

  


 


 

                         (32) 

 

This equation explains the relationship between two 

main parameters of vibrational amplitude ( a ) and 

detuning parameter ( ). Now if detuning parameters plot 

versus amplitude, by the change of crack parameters and 

excitations properties, the effect of these variables on 

nonlinear dynamic responses in the presence of the 

breathing crack could be shown. 

 

 

5. RESULTS AND DISCUSSION  
 

A cantilever beam has been considered with material 

properties listed in Table 1. Beam dimensions are given in 

Table 2. 

 

Table 1. Beam material properties 

 Measure 

Young’s modulus (E) (Pa) 200e9 

)3kg/m(


 Mass density 7860 

 Poisson’s ratio 0.3 

Table 2. Beam dimensions 

 Measure 

Length (L) (mm) 1850 

Height (h) (mm) 120 

Width (b) (mm) 150 

By plotting detuning frequency versus amplitude, the 

nonlinear responses are shown. In this section, the change 

of crack parameters such as crack position ( ), crack 

depth ( ), and damping ratio ( ) are studied. 

Furthermore, changing force magnitude and frequencies as 

well as the stable solutions compared to each other to show 

softening phenomenon and nonlinearities behaviour have 

been studied. 

As can be seen in Fig. 2, by changing the position of 

the crack and getting close to the fixed end, the 

nonlinearity has been increased. Fig. 3 illustrates the effect 

of damping on nonlinear responses. It illustrates that by 

increasing the damping ratio, the amplitude of vibration 

decreases in the absolute magnitude of detuning frequency. 

Fig. 4 indicates the impact of changing the depth of the 

crack. By increasing the crack depth, the dynamic 

responses behave more nonlinear. In Fig. 5, the impact of 

force magnitude on the frequency curve is shown. The 

changes lead to increase amplitude in an absolute detuning 

frequency that can be seen in the figure. 

 
Fig. 2. The impact of position change on nonlinear 

frequency curve when 0.35  , 0.001  , 

and
1,2 250F N  

 
Fig. 3. The impact of damping change on nonlinear 

frequency curve when 0.25  , 0.18  , 

and 1,2 200F N  
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Fig. 4. The impact of crack depth change on nonlinear 

frequency curve when 0.25  , 0.001  , 

and
1,2 200F N  

Fig. 5. The impact of forces magnitude change on 

nonlinear frequency curve when 0.25  , 0.35  , 

0.001  , and 
1,2 150 / secrad   

By comparing Figs. 6 and 7, it seems that using 

multiple frequency excitations leads to a difference in 

sensitivity by comparing the excitations considering equal 

magnitudes for force and frequency. In these studies, the 

total sum of excitations and frequencies is constant to have 

a better comparable situation. 
 As can be seen in Fig. 6, two different forces 

amplitude of 600 N and 20 N, considering the same 

frequencies of 150 rad/sec are plotted. Then by the same 

forces of 600 N and 20 N, the frequencies are changed to 

100 rad/sec and 200 rad/sec. The lower frequency is 

assigned to the stronger excitation and the higher one 

assigned to the weaker force. The result shows that the 

sensitivity has increased. Due to the same detuning 

frequency, the magnitude of the amplitude of the vibration 

has increased. Therefore, this kind of approach leads to a 

more sensitive nonlinear behaviour of cracked beams that 

is a significant issue in the crack detection and structural 

health monitoring application.  

 

 
Fig. 6. The impact of frequencies changes on nonlinear 

frequency curve when 0.25  , 0.35  , and 

0.001   

The result of changing frequencies magnitude has been 

a positive influence on the sensitivity of the cracked beam 

analysis. As shown in Fig. 7, a 600 N force with zero 

frequency (constant force) in the role of pre-force and a 20 

N force with a frequency of 300 rad/sec are applied. Note 

that, like the previous analysis that the total sum of the 

excitations in magnitude and frequency was constant, this 

assumption is valid during pre-force and harmonic 

excitation analysis.  

By comparing the response of multiple excitations, 

which is significant in Fig. 7, the result shows that 

excitation with a constant pre-force could increase the 

sensitivity of the crack analysis in nonlinear frequency 

curves again. In this figure, in the same detuning 

frequency, the magnitude of the amplitude of the vibration 

has increased again to result in the values indicated in Fig. 

6.  

 
Fig. 7. The impact of pre-force and changing frequencies 

on nonlinear frequency curve when 0.25  , and 

0.001   

 

 

6. CONCLUSIONS 

 
In this paper, a nonlinear cracked Euler–Bernoulli 

beam with a single degree of freedom under multiple 

excitations with multi-frequencies has been studied. 

Applying multiple frequency excitations lead to some 

combinational resonances. One of these resonances is 
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employed to study the nonlinear behaviour of the cracked 

beam. By using the method of multiple time scales in a 

combination resonance, the equation of the motion of the 

cracked beam has been derived and solved. The results 

show that the analysis of crack parameters in the nonlinear 

vibration of multiple excitations may be a suitable method 

for identifying the crack and the depth of the damage for 

structural health monitoring applications. In this study, we 

analyzed the effects of multiple-loads with different or the 

same frequencies on a cracked beam. The total sum of 

magnitudes and frequencies during the study of their effect 

is constant. The result shows that if a higher frequency 

assigned to a weaker force, the sensitivity of the nonlinear 

frequency responses increases. In this condition, in the 

same detuning frequency, we have a higher vibration 

magnitude. Then we decrease the frequency of stronger 

force to zero and increase the frequency of weaker force. 

In this condition, the stronger force has appeared in the 

role of the constant force or pre-force. It was observed that 

the sensitivity was increased again. The results indicate 

that the multiple frequency excitations lead to more 

sensitivity on nonlinear vibration responses of cracks. 

Based on the analytical results, a pre-force with a simple 

harmonic excitation can be more sensitive than a simple 

harmonic excitation to demonstrate a cracked beam's 

behaviour. Therefore, the results have indicated that the 

multi-frequency excitations model has introduced an 

effective method in structural health monitoring in order to 

study the vibrational nonlinearities of cracked beams. 
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